Wave front for a reaction-diffusion system and relativistic Hamilton-Jacobi dynamics.

نویسنده

  • S Fedotov
چکیده

The problem of wave-front propagation for the n-dimensional reaction-diffusion system involving Kolmogorov-Petrovskii-Piskunov kinetics and the diffusion transport with a finite velocity has been considered. By using a scaling procedure we have given an asymptotic derivation of the equation governing the evolution of a reaction front in the long-time large-distance limit. It has been found that this equation is identical in form to the relativistic Hamilton-Jacobi equation. In the case of a constant value of chemical rate function we have derived exact formulas for the position of reaction front and the speed of propagation by using relativistic mechanics techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems

In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...

متن کامل

Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method

In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...

متن کامل

Wave-Particle Duality and the Hamilton Action

The Hamilton-Jacobi equation of relativistic quantum mechanics is revisited. The equation is shown to permit solutions in the form of breathers (oscillating/spinning solitons), displaying simultaneous particle-like and wave-like behaviour. PACS: 03.65-w, 03.65Pm, 03.65.-b

متن کامل

Dynamical features of reaction-diffusion fronts in fractals.

The speed of front propagation in fractals is studied by using (i) the reduction of the reaction-transport equation into a Hamilton-Jacobi equation and (ii) the local-equilibrium approach. Different equations proposed for describing transport in fractal media, together with logistic reaction kinetics, are considered. Finally, we analyze the main features of wave fronts resulting from this dynam...

متن کامل

Speed of reaction-diffusion fronts in spatially heterogeneous media.

The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using singular perturbation analysis, the geometric approach of Hamilton-Jacobi dynamics, and the local speed approach. Exact and perturbed expressions for the front speed are obtained in the limit of large times. For linear and fractal heterogeneities, the analytic results have been compared with numer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 59 5 Pt A  شماره 

صفحات  -

تاریخ انتشار 1999